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ABSTRACT
Glutamate is amain constituent of dietary protein and is also consumed
in many prepared foods as an additive in the form of monosodium glu-
tamate. Evidence from human and animal studies indicates that gluta-
mate is a major oxidative fuel for the gut and that dietary glutamate is
extensively metabolized in first pass by the intestine. Glutamate also is
an important precursor for bioactive molecules, including glutathione,
and functions as a key neurotransmitter. The dominant role of gluta-
mate as an oxidative fuel may have therapeutic potential for improving
function of the infant gut, which exhibits a high rate of epithelial cell
turnover. Our recent studies in infant pigs show that when glutamate is
fed at higher (4-fold) than normal dietary quantities, most glutamate
molecules are either oxidized or metabolized by the mucosa into other
nonessential amino acids. Glutamate is not considered to be a dietary
essential, but recent studies suggest that the level of glutamate in the
diet can affect the oxidation of some essential amino acids, namely leu-
cine. Given that substantial oxidation of leucine occurs in the gut, on-
going studies are investigating whether dietary glutamate affects the
oxidation of leucine in the intestinal epithelial cells. Our studies also
suggest that at high dietary intakes, free glutamate may be absorbed by
the stomach as well as the small intestine, thus implicating the gastric
mucosa in the metabolism of dietary glutamate. Glutamate is a key ex-
citatory amino acid, and metabolism and neural sensing of dietary glu-
tamate in the developing gastric mucosa, which is poorly developed in
premature infants, may play a functional role in gastric emptying. These
and other recent reports raise the question as to the metabolic role of
glutamate in gastric function. The physiologic significance of glutamate
as an oxidative fuel and its potential role in gastric function during in-
fancy are discussed.	 Am J Clin Nutr 2009;90(suppl):850S-6S.

INTRODUCTION

Glutamate is a major oxidative fuel for the intestine. In ad-
dition, glutamate is an important precursor for other biologically
active molecules, including glutathione, proline, and arginine (1)
(Figure 1). Several studies have shown that glutamate is ex-
tensively metabolized by the intestine. Seminal studies by
Windmueller and Spaeth (2, 3) with the use of an in situ rat
intestine established that only small fractions of luminally ad-
ministered glutamate are absorbed into the mesenteric venous
blood. Subsequent studies in young pigs, preterm infants, and
adult humans have confirmed that dietary glutamate is exten-
sively metabolized by the intestine and that oxidation to carbon
dioxide is a major metabolic fate (4-7). Our recent studies in
young pigs also indicate that enteral glutamate is extensively
oxidized even when the dietary intake fed is 3- to 4-fold higher
than normal (8).

Molecular evidence is growing that glutamate functions as
a signaling molecule in the enteric nervous system and modulates
neuroendocrine reflexes in conjunction with the umami taste (9)
and nutrient sensing in the gastrointestinal tract (10). Glutamate
is the main excitatory neurotransmitter in the body, and multiple
glutamate receptors and transporters have been found in the
gastrointestinal tract and enteric nervous system (11-13). Recent
studies also have shown that the 2 vesicular glutamate trans-
porters (VGLUTs), VGLUTI and VGLUT2, are present both in
enteric nervous system and pancreatic tissue (14, 15).

The central importance of glutamate as a major gut oxidative
fuel and key enteric neurotransmitter may have therapeutic po-
tential for improving neonatal gut function. The premature
neonatal intestine exhibits a high rate of epithelial growth and cell
turnover, but poorly developed gastroduodenal function limits the
ability to provide critically important enteral nutrition (16, 17).
However, the use of glutamate as an enteral supplement to
augment neonatal gut function must be balanced against the
consideration that high doses of glutamate can induce neuro-
toxicity (18, 19). This article reviews the literature on intestinal
glutamate metabolism in the developing gut, mainly the small
intestine, and discusses the potential significance of recent
findings from a functional, nutritional, and clinical perspective.

MAJOR GUT OXIDATIVE FUEL

It is now well established that the splanchnic bed derives most
of its energy from the catabolism of amino acids, rather than
glucose or fatty acids. The liver has been historically considered
the main site of amino acid catabolism and oxidation. However,
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FIGURE 1. Metabolic fates of dietary glutamate in the intestine.
Glutamate is an important metabolic link between the tricarboxylic acid
(TCA) cycle and urea cycle involved in cellular energy generation and
nitrogen disposal. PEP, phosphoenolpyruvate.

since the classic studies of Windmueller and Spaeth (2, 3,20-22),
it has become apparent that the gut, particularly the intestine, also
is a major site of catabolism of several amino acids, mainly
nonessential amino acids glutamine, glutamate, and aspartate. An
important distinction to be made, however, is that, although
amino acids are catabolized in both the liver and gut tissues, the
extent to which they are completely oxidized to carbon dioxide
varies. Jungas et al (23) systematically reviewed the metabolic
fate of dietary amino acids in the gut, liver, kidney, and muscle
and derived 2 important conclusions. First, they estimated that
a primary metabolic fate of amino acid carbon in the liver is
conversion to glucose. They argued that sufficient ATP is gen-
erated from the partial oxidation of dietary amino acids to
generate roughly half of the liver's energy needs, an amount that
approximates the energy required for the synthesis of glucose.
Thus, although amino acids are consumed in oxidative metabolic
pathways in the liver, the complete oxidation of amino acids
would far exceed the liver's energy needs and capacity to handle
the end products. A second important observation from their
analysis was that the hepatic metabolism of amino acids to
glucose makes nearly two-thirds of the total energy content of
dietary amino acids available to peripheral tissues (as glucose).
As a result, there is no need for peripheral tissues to synthesize
a complex array of enzymes to oxidize amino acids and syn-
thesize urea. Glutamate is a key amino acid linking hepatic amino
acid catabolism and gluconeogenesis, because many amino acids
are first catabolized to glutamate by transamination (24).

The seminal studies of Windmueller and Spaeth (2, 3, 20-22)
were first to show evidence of extensive metabolism of gluta-
mine, glutamate, and aspartate in in situ intestinal perfusions in
anesthetized rats deprived of food. Results from young piglets fed
a high-protein, milk-based formula indicated that >95% of the
dietary glutamine, glutamate, and aspartate are used in vivo by
the gastrointestinal tract (1, 4). The studies of Windmueller and
Spaeth (2, 3, 20-22) focused attention on the role of glutamine
as the main oxidative fuel in the gut. However, note that both
glutamate and aspartate are of perhaps equal importance as in-
testinal oxidative fuels. Recent studies in young pigs and
humans confirm the extensive intestinal oxidation of dietary

3Clabeled glutamate, glutamine, and aspartate (4-7, 25, 26).
The intestinal metabolism of glutamate is presumed to occur

largely in epithelial cells lining the mucosa, namely enterocytes.
The first step in epithelial glutamate metabolism is transport from

the intestinal lumen across the apical membrane. Glutamate
transport by the enterocyte apical membrane occurs mainly by the
high-affinity XAG system and to a lesser extent by the low-
affinity B'> system; the XAG system transports both glutamate
and aspartate. The molecular identities of 4 proteins capable of
XAG system activity have been described in various tissues,
including glutamate-aspartate transporter I (GLAST-l), gluta-
mate transporter 1 (GLT-l), excitatory amino acid carrier 1
(EAAC-l), and excitatory amino acid transporters 4 and 5 (12,
13, 27, 28). Studies with pig and rodent tissues show that
EAAC-I is the most abundant glutamate transporter in the in-
testine and is expressed on the apical, brush border membrane
throughout the small intestine. We found the expression of
EAAC- 1 in isolated epithelial cells all along the villus and crypt,
and this has been supported by immunohistochemical analysis
showing expression in the brush border membrane (12, 13). The
latter study reported that EAAC-1 expression was localized
mainly to the small intestine and was not highly expressed in the
stomach or large intestine. However, both the GLAST and
GLT- I transporters were expressed in various cell compartments
within the stomach and to a lesser extent in the small intestine.

Once inside the intestinal enterocyte, glutamate catabolism
occurs in the cytosol and mitochondria by transamination by
aspartate aminotransferase, alanine aminotransferase, branched-
chain aminotransferase, and glutamate dehydrogenase (GDH)
enzymes, all of which are present in the stomach, small intestine,
and colon (29-31) (Figure 2). Interestingly, the activity of GDH
is increased approximately 3-fold in the small intestine after
weaning in piglets and rats (32, 33). The resulting keto-acid
product of branched-chain aminotransferase and GDH is
c-ketoglutarate, which can then enter the tricarboxylic acid
cycle and be metabolized, yielding carbon dioxide. The in situ
studies with perfused rat intestine and those in vivo with piglets
and humans indicate that most of the glutamine (55-70%),
glutamate (52-64%), and aspartate (52%) are oxidized to carbon
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FIGURE 2. Metabolic fate of dietary glutamate (GLU) and
a-ketoglutarate (AKG) in the intestinal enterocyte. Dietary GLU and AKG
are transported from the gut lumen into the enterocyte by the excitatory
amino acid carrier-I (EAAC-l) and Na-dicarboxy late cotransporter-1
(NaDC- I) transporters, respectively. Within the enterocyte, both GLU and
AKG can undergo transamination and transport into the mitochondria for
oxidative metabolism to CO,. BCAA, branched-chain amino acid; BCKA,
branched-chain keto acid; AST, aspartate aminotransferase; ALT, alanine
aminoti-ansferase; BCAT, branched-chain aminotransferase; TCA, tricarboxylic
acid; GDH, glutamate dehydrogenase; AGC, aspartate-glutamate carrier; GC,
glutamate carrier.
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dioxide (2, 4, 20, 22). Note that, although there is extensive
uptake and metabolism of these 3 amino acids, their carbon
skeletons are not completely oxidized to carbon dioxide, and
they do not account for all of the carbon dioxide released by the
gut. The remaining carbon atoms from these 3 substrates that are
not oxidized to carbon dioxide are converted to lactate, alanine,
proline, citrulline, ornithine, and arginine and then released into
the portal circulation (2, 4, 20). The metabolic fate of nitrogen
from these amino acids is not fully understood. However, evi-
dence suggests that a portion of the nitrogen derived from glu-
tamine and glutamate metabolism is transferred to ammonia and
other amino acids, including citrulline, ornithine, proline, and
arginine; much of the nitrogen from these products is converted
to urea in the liver.

Surprisingly few reports of glutamate oxidation measured in
isolated intestinal epithelial cells are available, in contrast to that
of glutamine and glucose, which highlights the perception that
glutamine and glucose are the main gut oxidative fuels (34-36).
Indeed, studies with isolated enterocytes show that glutamine and
glucose are important intestinal oxidative fuels (37-39). Gluta-
mine also effectively suppresses glucose oxidation in enterocytes,
whereas glucose has little effect on glutamine oxidation. The
oxidation of glutamine and its suppression of glucose oxidation
was also found to be nearly twice as high (60%) in the proximal
than in the distal (31%) small intestine (38). The relation is
consistent with in vivo studies in piglets, showing that, although
glucose represents an important oxidative fuel (29%), the pro-
portion of glucose oxidized completely to carbon dioxide is
substantially less than that of either glutamate or glutamine. The
implication is that glutamine and glutamate are preferentially
channeled toward mitochondrial oxidation, whereas most of the
glucose is used for other metabolic or biosynthetic purposes.
Mitochondrial oxidation of glutamate by intestinal epithelial cells
involves mitochondrial transport via recently identified glutamate
carrier proteins. These glutamate and aspartate-glutamate carrier
proteins act as mitochondrial antiporters for either protons or
aspartate, respectively, from the mitochondria (40). There is
limited information about the extent of expression of these mi-
tochondrial glutamate carrier proteins and their function in the
izastrointestinal tract.

An important and unresolved question with respect to in-
testinal glutamate metabolism is the extent to which the gut
microflora participates in the process. Most of the in vivo studies
conducted in perfused rat intestine (3), pigs (4), and humans
(5. 25. 26) were done under conditions of relatively limited gut
microbial load or in our work in pigs with diets containing
antibiotics. Thus, although intestinal epithelial cells have the
metabolic capacity for glutamate oxidation, there is no evidence
that amino acid metabolism measured in vivo is totally in-
dependent of the gut microflora. An interesting aspect of this
concept is the finding that the transporter for dicarhoxylic acids,
specifically -ketoglutarate, is present in pig gastrointestinal
tissues, including stomach, small intestine, and large intestine
4!). The teleologic explanation for the expression of this di-

carboxylic acid transporter in the gut mucosa is intriguing and
raises the question as to whether glutamate is catabolized to
s-ketoglutarate by gut microbes and taken up by intestinal ep-
ithelial cells and further metabolized. In this respect, we have
bLind that -ketoglutarate, like glutamate, is extensively me-
tabolized by the gastrointestinal tract when fed enterall y to pigs:

we showed that 80% of dietary -ketoglutarate is metabolized
in first pass by the gut and a third of this is oxidized to carbon
dioxide (42, 43).

GUT METABOLIC CAPACITY FOR EXCESSIVE
GLUTAMATE INTAKE

A longstanding concern with dietary glutamate consumption,
particularly monosodium glutamate (MSG), is the evidence and
potential risk of neurotoxicity in infants and children. Several
prepared foods contain added MSG, and some of these foods are
consumed by children. Some have raised serious concerns about
the potential risk of dietary MSG, parenteral glutamate, and its
implications for human diseases, such as obesity (44-46).
However, it is critically important to recognize that the evidence
of neurotoxicity in several experimental models only occurred
with extremely high enteral and parenteral glutamate loads (19,
47, 48). Note that the amount of glutamate given in the study by
Hermanussen et al (44) with pregnant rats was 2.5 and 5 g MSG/d.
Assuming that the rats consumed all the MSG given to them, this
translates into nearly 10-20 g/kg body weight of glutamate. For
perspective, the average breastfed or formula-fed infant receives
a daily glutamate intake of <1 g/kg. Moreover, a recent study in
preterm infants observed no change in plasma glutamate con-
centration after supplementation of formula with <4-fold
normal glutamate intake (49). Several reviews have concluded
that there is no evidence linking MSG to long-term serious
health problems in the general population; thus, MSG is gen-
erally recognized as a safe food additive (50).

An important factor in the consideration of dietary glutamate
or MSG toxicity is the extent of absorption into the circulation.
Several studies indicate that under normal dietary conditions
most of the dietary glutamate is either metabolized or oxidized to
carbon dioxide by the gut in first pass. However, the capacity of
the gut, mainly the small intestine, to metabolize dietary glu-
tamate when ingested in excess was unknown. Thus, to test this
question, we nvestigated the extent of gastrointestinal tissue
glutamate metabolism in young pigs fed supraphysiologic intakes
of glutamate (8). Note that these measurements we made with the
use of portal balance represent metabolism of all gastrointestinal
tissues, including the stomach, small intestine, and large in-
testine. However, it is presumed that much of the metabolism
represents first-pass metabolism by the small intestinal mucosal
epithelial cells. We quantified the metabolic fate of dietary I
glutamate in young pigs when administered intraduodenally
with a normal milk formula, control diet (600 iimol . kg
h) or diet supplemented with MSG <400% of the control
glutamate intake. We found that across the wide range of glu-
tamate intakes (600-2100 imol kg	 h') the fractional
percentage of glutamate absorption was not significantly dif -
ferent (13-17% dietary intake). However, the absolute rate of
dietary glutamate absorption and the circulating plasma con-
centration did increase significantly. When we compared the gut
metabolism of [' 3C]-glutamate, we found that oxidation to

was a major fate, yet was lower (33% compared with
49%) in pigs fed 350% compared with 100% glutamate intake,
respectively.

The findings from this recent study have shown that the
gastrointestinal tract capacity for metabolism of dietary gluta-
mate is substantial, even when the intake is in excess of the
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normal amount. When the dietary intake is increased 3-4-fold,
most of the dietary glutamate intake is metabolized by the gut,
either for generation of ATP or conversion into other amino acids.
Apart from carbon dioxide, most of the end products of glutamate
metabolism were predictably nonessential amino acids. For
example, when the dietary glutamate intake was increased 3-fold,
the net intestinal production of glutamine, aspartate, and orni-
thine increased significantly by 4.8-, 4.0-, and 2.7-fold, re-
spectively. The intestinal absorption of other amino acids also
tended to increase in pigs fed excessive loads (300% level) of
dietary glutamate, including proline, arginine, and branched-
chain amino acids (BCAAs). We would expect to see increased
intestinal production of proline and arginine under excessive
dietary glutamate intakes because these are byproducts of glu-
tamate metabolism by pyrroline-5-carboxylate. In contrast, there
was a surprising trend for increased net BCAA absorption. This
observation supports another recent study in which we observed
a 50% increase in net intestinal leucine absorption in pigs fed
supplemental -ketoglutarate (42). Taken together, these find-
ings suggest that under conditions of increased dietary avail-
ability of key gut oxidative substrates, namely glutamate and
-ketoglutarate, gut metabolism of BCAAs appeared to be re-

duced or spared. This possibility is intriguing, given the evi-
dence in vivo and in vitro that BCAAs are extensively oxidized
by the intestine to carbon dioxide (51-53). Moreover, glutamate
and -ketoglutarate are transamination partners in the reversible
reaction catalyzed by BCAA transaminase. The relation be-
tween dietary glutamate intake and essential amino acid oxi-
dation in the gastrointestinal tract is currently being investigated
in our laboratory.

GASTRIC GLUTAMATE METABOLISM

Glutamate, like other constituent amino acids ingested in
dietary protein, is normally absorbed and metabolized in the
small intestine subsequent to proteolytic digestion. However,
some amino acids, especially dietary MSG, are ingested in a free
form and thus may be metabolized differently when they are
presented to the epithelial mucosa of the stomach. To test this, we
compared the metabolic fate of dietary [13C]-glutamate in young
pigs when administered the same control diet and supplemental
glutamate intakes by the intragastric and intraduodenal feeding
route (8). The latter route occasionally occurs in infants fed by
transpyloric catheter or jejunostomy. Similar to the intra-
duodenal feeding route, we found that oxidation to 13CO2 was
the major metabolic fate (35-42%) of intragastric 113C1-glutamate.
However, in contrast to intraduodenal feeding (range: 13-17%),
the fractional rate of gastrointestinal glutamate absorption
when given intragastrically was significantly higher (range: 17-
28%) in pigs fed 100% compared with 300%, respectively. We
compared the relation between net intestinal glutamate absorp-
tion and dietary glutamate intake in pigs fed by either the in-
tragastric or intraduodenal route (Figure 3). Our results suggest
that the rate of dietary glutamate absorption is higher when
feeding occurs by the intragastric route, but only when gluta-
mate is fed in excess of the normal dietary intake in the free
form.

Our observation of increased gut glutamate absorption during
intragastric or intraduodenal feeding may suggest the possible
capacity for glutamate transport by the stomach mucosa. Further
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FIGURE 3. Mean (±SD) rates of gastrointestinal glutamate absorption as
a function of increasing dietary glutamate intake measured in infant piglets.
The rate of dietary glutamate absorption was greater when administered by
the intragastric route than by the intraduodenal route. Reproduced with
permission from reference 8.

studies are needed to measure this directly with the use of
preparations in which luminal glutamate absorption is quantified
when the pylorus is ligated to prevent passage into the small
intestine. The direct evidence for amino acid transport and ab-
sorption across the gastric mucosa is limited, although several
amino acid transporters are expressed in gastric epithelial cells,
including some involved in glutamate transport (13, 54). Gastric
glutamate transport and absorption may be physiologically sig-
nificant in dietary circumstances that involve feeding free amino
acid—based diets, which occurs clinically with some hypoaller-
genic formulas fed to infants and children.

GLUTAMATE AND GASTRIC FUNCTION

Apart from the potential capacity for glutamate transport into
the blood, the stomach is also emerging as an important site of
glutamate sensing and glutamate-mediated signaling of digestive
function (Figure 4). In addition to membrane transporters
(EAAC-1, GLAST, and GLT-l), several other classes of gluta-
mate receptors and vesicular transporters (VGLUT1 and VGLUT2)

(Glutamate Receptors & Transporters
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FIGURE 4. Physiologic and metabolic functions of glutamate within the
stomach. Glutamate sensing and metabolism may be mediated by several
groups of glutamate receptors and transporters expressed with the mucosal
epithelium and enteric nervous system. iGlu, ionotropic glutamate; mGlu,
metabotropic glutamate; NMDA. N-methyl-D-aspartate: AMPA, a-amino-3-
hydroxy-5-methyl-4-isoxazole propionate; KA, kainate; EAAC I, excitatory
amino acid carrier-I; VGLUTI-3, vesicular glutamate transporter-I to -3.
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are expressed within the stomach wall (55). Several members of
both ionotropic I N-methyl-n-aspartate (NMDA) -amino-3-
hydroxy-5-methyl-4-isoxazole. propionate: kainate] and metab-
otropic glutamate (mGluRI to mGluR8) receptors were found in
stomach tissue and appear to affect gastric function. Glutamate
has been shown to activate contractile action and blood flow in
the gastric fundus in several studies, possibly by cholinergic
neurons (56-60). NMDA and kainic acid stimulate contraction
of isolated rat gastric fundus with almost identical strength of
action, whereas the metabotropic receptor agonist ACPD
(aminocyclopentane-Ir(itzs- I ,3-dicarboxylic acid) has no effect
(59-62). Other reports suggest that glutamate receptors also are
involved in the modulation of gastric acid secretion by ionotropic
receptors, and aspartate regulates acid secretion in the stomach
by inhibiting histamine release through the NMDA receptors.
NMDA receptor-mediated modulation of gastric motor function
also may accelerate gastric emptying and food intake. An an-
tagonist of NMDA receptors. MK-801 (dizocilpine), increased
meal size and duration in rats, but it did not increase sham
feeding or attenuate reduction of sham feeding by intraintestinal
nutrient infusions (63). Another report has shown that ioflotropic
receptors are involved in mcchanoscnsitive vagal responses in
the gastric antrum (58). Studies show that intragastric glutamate
infusion specifically stimulates afferent gastric vagal nerves,
whereas all other amino acids had no effect (10. 64). Moreover,
the activation of vagal afferent activity was dose dependent and
effective within the physiologic range of normal dietary gluta-
mate intakes. The mechanism whereby free luniinal glutamate is
sensed by the gastric mucosa appears to involve serotonin and
nitric oxide production and release. This group showed the ex-
pression of the mGluRl in the rat gastric fundus (65). These
studies suggest that neural sensing of gastric luminal glutamate
may play a direct role in controlling digestion function.

CLINICAL APPLICATION IN INFANTS
Premature infants frequently present with significant gastro-

duodenal motor dysfunction, which is manifest clinically as
feeding intolerance resulting from delayed suck-swallow co-
ordination, gastroesophageal reflux, and delayed gastric emp-
tying (16). The consequence of feeding intolerance in premature
infants is prolonged use of parenteral nutrition, delayed time to
achieve full enteral feeding, increased morbidity and risk of
infection, and prolonged hospitalization. Despite this clinical
problem, the neuroendocrine function of the developing gut is
poorly understood. However, recent findings showing that lu-
minal glutamate activates gastric contractile activity may offer
a therapeutic approach to stimulate gastroduodenal motor activity
and reduce feeding intolerance in premature infants. A recent
study in premature infants showed that acute feedings of sup-
plemental glutamate at 2- and 4-fold higher than normal did not
increase the circulating plasma glutamate concentration (49).
Thus, the available evidence indicates that supplemental gluta-
mate is well tolerated and safe in premature infants. (Other
articles in this supplement to the Journal include references
66-94.)
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